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Abstract—Dynamic Voltage Frequency Scaling (DVFS) has
been the tool of choice for balancing power and performance
in high-performance computing (HPC). With the introduction
of Intel’s Sandy Bridge family of processors, researchers now
have a far more attractive option: user-specified, dynamic,
hardware-enforced processor power bounds. In this paper we
provide a first look at this technology in the HPC environment
and detail both the opportunities and potential pitfalls of using
this technique to control processor power.

As part of this evaluation we measure power and perfor-
mance for single-processor instances of several of the NAS
Parallel Benchmarks. Additionally, we focus on the behavior
of a single benchmark, MG, under several different power
bounds. We quantify the well-known manufacturing variation
in processor power efficiency and show that, in the absence of a
power bound, this variation has no correlation to performance.
We then show that execution under a power bound translates
this variation in efficiency into variation in performance.

I. INTRODUCTION

Power has now become the primary performance problem

in high-performance computing (HPC). Up to this point,

Dynamic Voltage/Frequency Scaling (DVFS) has been the

method of choice for investigating the tradeoff between

power and performance in HPC applications. Running the

processor at a lower clock frequency requires less voltage,

but the impact on performance and the amount of power and

energy saved is highly application dependent. While research

has made great strides in modeling these effects, to our

knowledge no machine in the Top 500 list of supercomputers

makes use of DVFS to save power or energy.

Power clamping provides a potentially compelling alterna-

tive to DVFS. Instead of managing the processor’s frequency

directly, the user simply specifies a time window and a power

bound and the hardware guarantees that the average power

will not exceed the specified bound over each window. Both

the window size and bound may be modified at runtime.

This mechanism enables system designers and operators
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to control the exact amount of power that each processor

consumes across the entire system.

However, we account for several subtleties in order for

power clamping to gain widespread acceptance in the HPC

community. In this paper, we explore the variations in power

efficiency across processors and how this variation is trans-

lated into variations in performance while under a power

bound. Small variations in processor power consumption

inevitably introduced in the manufacturing process are well-

known [7] and do not affect processor speed. Placing a

power bound on a processor moves the variation from power

(the processor now operates at a specified number of watts)

to performance (less-efficient processors run more slowly at

the specified power bound).

This perfromance impact is of particular interest in the

HPC domain. Up to this point, machines have been specified

with the assumption that variation in power can be tolerated

while variation in performance cannot: a few inefficient

processors do not exceed the power provisioning of a

machine room, but a single slow processor can constrain

the performance of an entire application. Under a power

bound, those few inefficient processors are transformed into

slow processors. This paper quantifies that effect on real

hardware for several of the NAS Parallel Benchmarks [15].

II. OVERVIEW

Until now, most research in power-aware supercomputing

has focused on trading a loss of performance for energy

savings. While an interesting problem in its own right, it did

not match well with the goal of supercomputer stakeholders,

which is to make an existing machine run as fast as possible.

In effect, these stakeholders were asked to consider doing

less work per unit time in order to save some amount of

someone else’s money. These approaches have not gained

any traction in the wider community.

However, for the largest supercomputers, the amount of

electricity that can be brought into the machine room is

becoming the limiting factor on their capability and, thus, the

amount of work that they can perform in a fixed time period.

As a result, we can no longer simply purchase additional

homogeneous nodes to increase performance because no

power is available to bring them online.



The processor architecture community has already

reached this point and we propose to adopt their strategy.

The most recent processors from both AMD and Intel are

overprovisioned with respect to power: not all cores can

run simultaneously at the highest possible frequency, and

the user effectively buys capacity that will always remain

unused. What the user buys instead is flexibility, either to

run all cores at a slower frequency or a handful of cores at

a faster frequency.

We foresee future clusters designed the same way. For

problems that benefit from the largest number of processors,

nodes will run at either a low CPU frequency or at a low

power bound. For problems that perform best given a smaller

number of faster nodes, the user or operator will schedule

a smaller number of nodes with a higher power draw and

turn off the remaining nodes. Utilization will no longer be

measured as a percentage of node-hours but rather as a

percentage of maximum kilowatts.

Making this approach a reality requires solving problems

far more difficult than the relatively straightforward problem

of saving energy. The user is presented with what is ef-

fectively a dynamically reconfigurable, homogeneous cluster

and must determine not only the optimal number of nodes

but also how much power should be assigned to each node,

and for how long. In short, we have moved from an energy

savings problem to a power scheduling problem.

As we detail in the discussion section, both DVFS and

power clamping have their strengths when brought to bear

on the scheduling problem: power clamping provides a hard,

tight bound on power but performance modeling under the

power bound becomes much more difficult. DVFS provides

a loose, soft bound, but performance under user-controlled

DVFS is now well-understood. The experimental results that

follow are the first necessary steps to understand perfor-

mance under a power bound.

III. INTEL’S RUNNING AVERAGE POWER LIMIT (RAPL)

With the Sandy Bridge family of processors, Intel intro-

duced both onboard power meters and power clamping. In

this section we provide a technical overview that is informed

by our practical experience with these tools. To the best of

our knowledge, the only documentation for these features is

in chapter 14.7 of Intel’s Software Developer’s Manual[11].

We stress that we are experimenting with new processors in

a pre-production environment and issues raised here may be

resolved in the near future.

A. Interface

Users measure and control processor power using sev-

eral model-specific registers, or MSRs. Intel provides two

privileged instructions, readmsr and writemsr, as the

interface to these registers. Instead of writing a specialized

kernel driver, users and developers on Linux can use the

msr kernel module. This module exports a file interface at

/dev/cpu/N/msr that, given suitable file permission, can

be used to read and write any MSR on the node. This

approach has significant security implications and should

only be used for development in a trusted environment.

B. Architectures

Intel separates the Sandy Bridge family into two

classes: client (family=0x06, model=0x2A); and server (fam-

ily=0x06, model=0x2D). The server-class processor receives

the Xeon designation. The two architectures share a subset of

RAPL features. We only use Xeon processors in this work.

C. Domains

The Sandy Bridge architecture supports three power

domains on each architecture. Both architectures support

package (PKG) and Power Plane 0 (PP0) domains, while the

server adds a separate DRAM domain and the client adds a

second power plane (PP1). The documentation provides little

information to differentiate the circuitry that each domain

covers. For example, “PP1 may reflect to uncore” [the

unified core abstraction of last-level cache] and “Generally,

PP0 refers to the processor cores” exhaust the descriptive

documentation of these two domains.

Our testbed does not support measurement or control of

the DRAM domain. Across the NAS Parallel Benchmark

suite, the power ratio between the PKG and PP0 domain

remained nearly constant. In this work we limit our experi-

ments to measurement and control of the PKG domain.

D. Units

We have not found any documentation that describes

the accuracy of the time, power and energy measurements.

Precision is architecture-specific and is provided by reading

the MSR_RAPL_POWER_UNIT register. Our architecture re-

ports power clamping will be performed in units of 0.125W

over time windows with units of 0.977 milliseconds. Energy

measurements are reported in units of 0.0152 milliJoules.

E. The PKG Domain

The POWER_LIMIT set of MSRs reports the architecture-

specific power envelopes and maximum clamping time win-

dow for each domain. Our PKG domain supports power

bounds as low as 51W. Our thermal spec power is rated

at 115W and our maximum power is 180W. The maximum

time window for power clamping is 0.0459 seconds.

F. Power Clamping

The Sandy Bridge processor does not provide a power

bound in the strictest sense. Instead, the user specifies a time

window and a maximum average power for that window and

the processor guarantees that it will not exceed this average.

Intuitively, longer windows may allow better performance

for applications that utilize the CPU in bursts; if the burst

exceeds the window size, the processor will have to be

throttled. Our future research will determine how the size



of this window affects machine room power provisioning,

particularly for parallel scientific applications, which tend

to have highly synchronized load spikes.

The PKG domain provides for two separate clamping

windows. A user can provide a higher bound for a smaller

window and a lower bound for a larger window, which

may provide finer control over application performance. A

lower bound for the smaller window would make the larger

window superfluous. We use a single window of the smallest

possible size (0.000977 seconds) for all experiments in this

paper. Smaller windows best avoid potential power spikes

in the absence of application-specific knowledge.

The processor provides two modes for power clamping:

enabled and clamping. Setting the former causes the pro-

cessor to respect the minimum performance level request by

the operating system. Setting both allows the processor to

override the OS if necessary to meet the power bound. In our

experience, setting only the enabled bit did not change the

power profile of any benchmark. All experiments reported

in this paper set both bits high.

G. Other Interfaces

Each domain has a separate, read-only, 32-bit energy

meter. As the unit of joules is so small, this meter rolls

over every few hours. The PP0 and PP1 domains expose a

policy interface that may only be useful on client architec-

tures. The PKG and DRAM domains expose a counter that

records the number of seconds spent below the performance

level requested by the operating system. This measurement

could be useful when the power bound is only expected

to be reached sporadically. In our work we expect that the

clamping will operate more or less continuously, and so we

have not investigated these counters further.

IV. EXPERIMENTAL RESULTS

We performed these experiments on a dedicated 32-node

partition of the Zinfandel TLCC2 cluster and the general-

use 137-node partition on the Merlot TLCC2 cluster, both

at Lawrence Livermore National Laboratory. Each node

contains two Sandy Bridge 8-core processors. Benchmarks

were compiled using GCC 4.4.6 and MVAPICH2 1.7 and

executed under a Red Hat Linux derivative using the 2.6.32

Linux kernel. We configured the NAS Parallel Benchmarks

to use the class C problem size and 8 MPI ranks. We

explored several representatives of the suite initially and then

focus on the MG benchmark. We choose this benchmark

because it consumes the most amount of power of the NAS

Benchmarks, and because it executes for a reasonable length

of time while keeping all eight cores busy. We configured

experiments that use a hardware power bound to use a 1

millisecond window on the PKG domain with clamping

enabled.

Figure 1 shows power variation across the 64 processors

in our testbed partition. We measure average power on each

processor for selected NAS Parallel Benchmarks. We order

the processors by maximum power draw. Three processors

are annotated: the two least-efficient processors are on nodes

49 and 50, and the most-efficient processor is found on node

48. The MG benchmark consumes the greatest amount of

power, with roughly ten watts separating the least- and most-

efficient processors.

Figure 2 shows the results for the MG benchmark. We

compile the MPI version of the benchmark to use eight MPI

ranks, one for each core in the machine. We use an MPI pro-

filing library to set up the necessary MSRs immediately after

the program returns from MPI_Init and measure and reset

the MSRs immediately before calling MPI_Finalize. We

read total joules from the PKG domain and divide this over

elapsed time to calculate average watts.

We run the benchmark 34 times on each processor, once

without any power bound and once at each of the 33 power

bounds ranging from 51W to 83W. Each point on the graph

represents a single run and its associated power (given

in average watts) and performance (given in seconds of

execution time). We highlight the following special cases:

Unbounded power:: The bottom right corner of the

graph has a cluster of black crosses, a red empty circle and

a blue empty triangle. These points represent each of the 64

processors in normal operation, i.e., with no user-specified

power bound. These points are distributed horizontally: each

processor takes roughly the same amount of time to execute

the benchmark. However, these data points are spread out

over the power dimension, ranging from 77.74W for the

most-efficient processor (the blue empty triangle) to 85.36W

for the least-efficient processor (the empty red circle).

We emphasize the lack of correlation between efficiency

(as measured by power consumption) and performance (as

measured by wall clock time). All 64 processors operate at

the same clock frequency and have the same execution rate.

However, some processors use more power than others.

Bounded power:: Starting from the top left of the graph

we show average power and execution time while running

under a user-specified power bound. We track the processors

identified as most and least efficient based on non-bounded

execution. The same processors are usually the most and

least efficient at nearly all measured bounds. However, we

now express efficiency in terms of time. Execution times

range from 16.26 seconds for the most-efficient processor

to 17.23 seconds for the least efficient. We again empha-

size the lack of correlation between efficiency and power

consumption. Regardless of how efficient a processor may

be, if it is operating under a user-specified power bound, its

power consumption matches the bound precisely.

The previous experimental results measure power and

execution time over the entire execution of the benchmark.

In Figure 3 we zoom in to measure the effects of bounding

power at a much finer scale. We run the class-E version

of MG over 256 cores (16 nodes) and five power bounds
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Figure 1. 64 processors ordered by average power consumption over selected NAS Parallel Benchmarks.

ranging from the lowest supported by the PKG domain

(51W) to a bound that is high enough not to affect execution

time (91W). Our instrumentation records timestamps and

accumulates energy at the beginning and end of each MPI

library call, thus distinguishing between time and energy

spent during computation and communication tasks. From

the over 25,000 measurements that result, we show only

those computation tasks that take more than 100 millisec-

onds at the 91W bound.

For this particular instance of this particular benchmark,

power varies over a narrow range at the 91W bound. At the

71W bound nearly every task is slowed with the greatest

variability in slowdown occuring at the 51W bound. This

test reflects the behavior of a single processor (node zero);

observed variation in these experiments is mostly likely due

to variation in execution rather than variation in hardware.

V. DISCUSSION

In this paper we have laid out a vision for a new approach

to power-aware supercomputing and demonstrated a new

tool that may help to achieve that vision. In this section,

we sketch out some less obvious implications of computing

under a power bound.

A. Processor-level modeling

The combination of high-resolution timers and onboard

power meters makes processor-level performance modeling

far more tractable. For a given static computational load, we

can easily plot performance under an arbitrary power bound.

If we are only going to use a subset of the processors in a

system than an obvious optimization is to select first from

the most-efficient processors.

Performance modeling becomes far more interesting when

we no longer assume that loads are static. For example,

running a load-imbalanced application under a power bound

could produce dramatic swings in execution rate: a state in

which all cores are busy and slowed to meet the power bound

can suddenly become a state in which a subset of cores are

idling and their power has been effectively contributed to the

remaining cores, which causes them to execute much faster.

This execution profile would be a challenging problem for

single-processor applications; modeling HPC applications

would also have to account for how these local effects

influence the behavior of remote processors.
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Figure 2. Measured power and performance of the single-processor mg.C.8 benchmark over 64 processors and several power bounds.

B. Node-level modeling

Most HPC systems use nodes with multiple sockets. As-

suming that the available processors will fall within a range

of efficiencies, is it more advantageous to install processors

of similar efficiencies on a node or to arrange them so that

one processor will be significantly more efficient than the

others? The answer will depend on the cluster configuration

as well as the characteristics of the applications that are

executed on the cluster. For example, application that should

maximize memory first and processor counts second would

benefit from having unused, less-efficient processors dis-

tributed throughout the nodes. Applications that benefit from

smaller numbers of faster processors would likely benefit

from having the most-efficient processors concentrated in

the smallest number of nodes.

C. System modeling

If the system has heterogeneous nodes (with regard to

processor efficiency), how are those nodes best distributed

throughout the system? Segregating nodes by efficiency may

provide superior network performance for small-node-count,

high-node-power jobs but inferior performance for large-

node-count, low-node-power jobs. Rack capacity could also

be an issue: a rack designed to match the expected median

power draw may not performance as well if it is populated

entirely with low-efficiency processors.

D. Runtime modeling

Once a system design has been implemented, the user

must decide the best way in which to use the system. To

do so, the user must not only choose the best number of

nodes, but also select which nodes to use, which processors

on the nodes, and finally how to go about balancing power

consumption throughout the duration of the program. These

decisions must be informed by the interplay of power and

performance at the system, node and processor levels.

VI. RELATED WORK

Power clamping (or “capping”) is by now a well-

established if little-used processor feature. In addition to

the Intel processor families, power capping is available in

both the IBM Power6 and Power7 architectures [3], [4].

The AMD Bulldozer architecture implements power capping

by allowing the user to specify a thermal design power

limit for the processor as well independent DRAM power

capping [1].
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Characterizing and mitigating processor power variation

has sparked recent interest. Power variation usually changes

as processors age, thus requiring continuing characterization

during their lifetimes [2]. Rangan et al. [16] observe that

variation across cores can be evidenced by variation in

the highest frequency that each core can support. Rather

than using the minimum frequency across all cores, they

recommend classifying the processor using the average core

frequency, thus effectively masking core heterogeneity.

Our proposed strategies for saving power by turning off

individual processor components is very much in the spirit

of existing work. In particular, Ahmed Youssef has designed

a Dynamic Sleep Signal Generator that uses runtime traces

to predict when functional units can safely be placed in

a sleep state [20]. While hardware-enforced power bounds

cannot yet be applied to individual cores, Satori and Kumar’s

work shows demonstrated that control at this level of gran-

ularity allowed a larger number of cores to be placed on a

processor [17]. Follow-on work explored hierarchical, table-

drivent and gradient-ascent techniques for power scheduling

that mitigated power bound violations [18], [12].

Several teams have taken advantage of processor variation

to create more efficient schedulers. Several teams have

examined the combination of processor power variation and

DVFS at processor granularity [14] (for the Pentium M

architecture) and at the granularity of individual cores [19],

[10] (on the AMD Opteron architecture), as well as on more

exotic architectures [8], [6]. Herbert et al. [9] took the next

step by combining DVFS with work shifting to prioritize

use of the most-efficient cores.

Several alternative approaches exist for processor power

control. Per-core power gating (effectively shutting off in-

dividual cores) has been explored for data center work-

loads [13]. Cebrain et al. [5] combine DVFS with several

additional architectural-level techniques, such as instruc-

tion criticality analysis, pipeline throttling, and power-token

throttling. Davis et al. [7] have examined the effects of

variability in power models used to characterize large-scale

clusters.

Two key differences distinguish this work from the fore-

going. First, to the best of our knowledge we are the first to

specifically target this technology to the high-performance

computing domain. Second, for the first time, we show the

effects of of power clamping across a significant number of

processors. Our future work will apply the lessons learned

from both the functional-unit scheduling and multicore



scheduling detailed above in order to make the most efficient

use of HPC assets.

VII. CONCLUSION

In this paper we have made the following contributions:

1) Quantification of the power envelope and variation of

the most recent Intel server-class processor, the Xeon

Sandy Bridge.

2) Explanation of how the Runtime Average Power Limit

(RAPL) technology can measure and limit power.

3) Demonstration that a power bound converts variation

in processor power to variation in performance.

4) Exploration of the potential of RAPL as a DVFS

replacement.

5) Discussion of how RAPL could enable moving beyond

power savings and into power scheduling in the high-

performance computing domain.

We have only scratched the surface of these features. In

particular, we look forward to being able to clamp and to

measure power in the DRAM domain as well as to determine

how best to use the two clamping windows in the PKG

domain. We see RAPL as an enabling technology that will

allow us to treat power as a schedulable resource. The greater

efficiency realized will in turn allow more resources to be

brought to bear for the same amount of power.
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